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M O T I O N  O F  A F L E X I B L E  F I N I T E - L E N G T H  F I L A M E N T  

I N  A F L O W  O F  A V I S C O U S  F L U I D  

V. M. Shapova lov  UDC 531.391.1:532.5.011 + 66.063.8 

The two-dimensional problem of the configuration of a flexible filament of finite length in a 
deformable viscous fluid is solved. The flexural stresses in the filament and the inertial and 
grnvitational forces are not taken into account. The equilibrium equations are obtained. The 
friction force that acts on the filament surface from the side of the viscous fluid is proportional 
to the flow rate. The specific features of the evolution of a bent filament under the conditions 
of pure and simple shear of a fluid are studied numerically. Analytical solutions are obtained 
for the evolution of a rectilinear filament; in particular, the stretching force in the filament 
is found. For the indicated types of flow, the stability of a rectilinear filament against small 
perturbations is investigated. 

One of the problems of producing reinforced polymer compositions is mixing of filaments with a polymer 
matrix. During mixing the forces that appear in the filaments are such tha t  a filler from steel wire is torn, 
and the glass filaments become a dust [1-3]. This reduces the strength of articles. In addition, there is no 
theoretical explanation of tile so-called calender effect, which is manifested in the anisotropy of the s t rength 
properties of chaotically reinforced polymer compositions. The effect is due to the orientation of a filler of the 
filaments along the direction of calendering. An experimental  study of the dynamics of a separate filament 
and measurements of the stretching forces involve significant technical difficulties. The author failed to find 
a theoretical treatment of this process in the literature. 

The theoretical studies of tile dynamic effect of a fluid (gas) flow on a flexible filament performed by 
Kochin [4] and Krylov [5] are noteworthy. Kochin [4] solved the problem of the change in the shape of the kite 
balloon's hawser under the action of a wind. Krylov's problem of the equilibrium conditions of a spherical 
mine in flow is similar [5]. The dynamic effect of the flow of a viscous fluid on the filler's fiber prot ruded like 
a cantilever is analyzed by Kim and Skachkov [6]. To determine the elastic line of a fiber, it was proposed to 
parti t ion the length of the fiber into a finite number  of segments, within the limits of which the fiber rigidity 
is constant, and the external loads (forces and moments)  act only at the ends of the segments. 

The aim of the present study is to consider theoretically the evolution of the shape and tension of an 
inextensible flexible filament of finite length under the conditions of pure shear and of a Couette  plane flow 
of a viscous fluid, analyze the mechanism of the "orienting" effect of a fluid on a rectilinear filament, and 
study the stability of a rectilinear filament against small perturbations. 

1. F o r m u l a t i o n  o f  t h e  P r o b l e m .  The velocity field in mixers is generally three-dimensional, but  we 
confine ourselves to the consideration of a two-dimensional flow to clarih" the main specific features (evolution 
of tim shape and tension). For example, the velocity field in mixing rollers is two-dimensional. In this case, 
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the simple shear dominates near the roller surface, whereas the material deformat ion is close to pure shear 

in the middle zone of the flow [7]. 
An ideal flexible filament in a flow of a viscous fluid is considered (Fig. l a ) .  Since this filament does not 

offer resistance to bending, the internal force is only the tension N which acts along the tangent to the filament 
axis. The  inertial and gravitational forces are negligible compared to the axial tension. The filament does 
not contact  with other filaments. It is affected by the friction force from the side of the deformable viscous 
fluid, bu t  the velocity field in the fluid remains unchanged. Tim elastic strains connected with expansion or 
compression of the filament are not taken into account. There  are no segments of  large (or infinite) curvature 
on the filament. The flow is laminar and isothermal. The  filament axis remains a flat curve. 

Let  us construct the equilibrium equations. In the Cartesian coordinates xOy,  tile configuration of 
the filament axis in parametric form is described by the functions x(s) and y(s) ,  where s is the coordinate 
reckoned along the filament axis. This axis lies in the xO y  plane. The fi lament 's  element of length ds is 
subjected to the friction force whose projection is d F  on the normal and d P  on the tangent (Fig. la) .  The  
angle between the horizontal direction, which we assume to be the direction of the  x axis and the tangent  to 
the filament axis, is denoted by ~. Then, the equilibrium equations (the Kirchhoff  equations) have the form 

E X  = O: ( g  + dN)  cos(~y + d~p) - N cos ~p + d R  sin (~ + d~z/2) + d P  cos(~ -4- d~y/2) = O, 

EY = O: (N  + dU) sin (~ + d~) - U sin p + d P  sin (~ + d~/2) - dF  cos(~ + d~/2)  = O. 

With  allowance for the relations 

cos(~ + dp) = cos F - d~y sin ~ + . . . ,  sin (~ + dF) = sin p + d p  cos ~ + . . . ,  

ignoring infinitesimals that  have an order of magnitude higher than the first one, we obtain the following 

equations: 

d ( N x ' )  + y' d F  + x'  d P  = 0; (1.1) 

d ( N y ' )  + y' d P  - x'  d F  = 0. (1.2) 

The  relations sin ~ = dy/ds  = y~ and cos ~ = dx /ds  = x p were taken into account.  Hereafter, the derivative 

with respect to s is primed. 
We differentiate the coupling equation (inelasticity condition for the fi lament axis) 

(x,)2 + (y,)2 = 1 (1.3) 

with respect to s: 

have 
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We multiply Eq. 

x , x  f + y ,y l  = O. (1.4) 

(1.1) by x'  and Eq. (1.2) by y'; adding them, with allowance for (1.3) and (1.4) we 



dN + dP = 0. (1.5) 

Similarly, multiplying Eq. (1.1) by y' and (1.2) by x'  and subtracting the resulting equalities, with allowance 
for relations (1.3) and (1.4) we obtain the second equilibrium equation 

F '  - N J ' / x '  = O. (1.6) 

Tile equations of evolution of the shape of a flat filament are derived with allowance for the dependence 

of the friction force on the fluid and filament velocities in (1.5) and (1.6). In the inertialess approximation, 
a change in the friction force caused by fluid deformation causes a simultaneous change in the filament 

configuration and tension. 
Let  us consider the components of the friction force. We assume that the f l ament  is moistened with a 

fluid and tha t  the adhesion condition is satisfied. The minimum radius of curvature is much greater than the 
filament diameter .  There is a three-dimensional boundary layer near the surface of the moving filament. By 
virtue of the linearity of the Stokes equations (the inertialess approximation for small Reynolds numbers), the 
motion in the  boundary layer can be regarded as a superposition of two motions: transverse and longitudinal 
flows about  the filament. It is noteworthy that,  for non-Newtonian fluids, the principle of superposition of 

the flows is not  satisfied. 
For a transverse flow about an infinite cylinder, the friction force is determined by the Lamb formula 

[8] 
dF = B nAvn ds, (1.7) 

where B,, = 47r#/In (7.4/Re), Re = (v}dp/# is the Reynolds number, # is the viscosity of the fluid; d is the 
filament diameter ,  p is the density of the fluid, Av,~ is the relative velocity of the transverse flow, and (v) is 

the characterist ic velocity. 
In forinula (1.7), the coefficient B,~ takes into account the effect of the filament diameter.  This coef- 

ficient changes slightly over a broad interval of Reynolds numbers (~s Re increases from 10 - s  to 10 -3, the 
coefficient B,~ increases by a factor of 2.3). Therefore, the value of B,, is assumed to be constant and to 
correspond to the characteristic velocity of the fluid flow about the filament. 

W he n  the systems filled by" filaments are nfixed, the fluid flow about a separate filament is topologically 
limited to the hydrodynamic influence of the adjacent filaments, which form a tube of the kind around it. 
Therefore, in the first approximation, we consider a filament that  moves axially in a cylindrical tube filled 
with a viscous fluid (axisymmetric Couet te  flow). The radius of a conventional tube (r) is determined by the 
average distance between the filaments and is related to their volumetric concentration (c) by the relation 
(r} = d / ( 2 . 1 x / ~ )  [9], where d is the diameter  of the filament and (c) = 0.05-0.30). In this case, the axial 

friction force that  acts on the filament surface is determined by the formula [8] 

dP = A ,  A v ,  ds, (1.8) 

where A~ = 7r d#/[ ( r )  In (2<r}/d)] = 2.17r#/in ( 0 . 9 5 2 / V ~ )  and Av~ is the relative velocity of the longitudinal 

flow of the fluid about the filament. 
Formulas (1.7) and (1.8) reflect exactly the linear dependence of the friction on the velocity for a 

laminar flow, though the numerical values of the coefficients A~ and Bn can be refined. 
The  s ta t ionary plane velocity field of the fluid is characterized by the components vz(x, y) and vy(x, y). 

For an a rb i t ra ry  point M at the filament, the velocity components have the form Ox/Ot = 2 and Oy/Ot = ~] 
(Fig.lb). The  viscous-friction force is due to a certain lag of the filament behind the moving surrounding 
fluid. For example,  in the direction of the x axis, the fluid velocity v~ exceeds the filament velocity 2 by the 
inagnitude vx - 2. Projecting the velocities onto the tangent and the normal to the filament axis, for the 

relative velocities we obtain the following expressions: 

A~n = (v~ -- ~) sin ~ -- (vy -- ~) cos ~, A.vr = (v~ -- k) cos ~ + (vy -- y) sin ~. 

The derivatives with respect to t are dotted.  As in (1.1), by replacing the trigonometric functions by the 

quantities x '  and y', we have 
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z~v ,  = (vx - ~ ) y '  - (v~ - 9 ) x ' ,  a r t  = ( ~  - ~ ) : r '  + (vy - 9 ) y ' .  (1.9)  

Considering jointly (1.3) and (1.5)-(1.9), we obtain a system that  describes the nonsta t ionary strain 

of a flexible filament: 

N '  + A~-[(vx - ic)x' + (vy - Y)Y'] = O, (1.10) 

B,~[(vz - 2)y'  + (vy - ~)x'] - N y " / x '  = 0, (x,)2 + (y,)2 = 1. 

Equations (1.10) should be supplemented with the initial and boundary conditions: 

t = 0: x = xo(s),  y = yo(s), N -- 0; (1.11) 

t > 0: s = +l,  N = 0, y" = 0. 

Where 21 is the filament length and x0(s),  yo(s) are the parametric description of the initial shape of the 
filament. We reckon s from the middle of the filament: the positive and negative directions to the right 
and to the left, respectively (Fig. 1). According to (1.6) or the second equation in (1.10), the absence of 
tim stretching force at the free ends of the filament is equivalent to the zero curvature of the filament 's end 
y" = x" -- 0 for s --- +l.  The  initial tension is absent. 

Now we analyze two rheological types of two-dimensional flow: pure shear and simple shear. In the 
case of pure shear,  the velocity components vx(x ,  y) and Vy(X, y) are determined by the relations [10] 

~ = g l ~ l x ,  ~ = - g i T l y .  (1 .12)  

Here 7 = Ovx/OX is the strain rate and g = sign'y is a parameter  that  describes the flow direction (the 
expansion along the x axis and the compression along the y axis occur for g -- - 1  and vise versa for g = -1 ) .  

In the case of  simple shear flow (Couet te  flow), the stat ionary motion of a fluid between two unbounded 
planes which are parallel and equidistant from the x axis is considered; the upper plane moves with constant 
velocity in the positive direction of x, and the lower plane moves with the same velocity in the negative 
direction. A laminar  regime of flow with a linear velocity profile is established in the gap. Th e  x axis lies 
in the horizontal plane and remains fixed. In addition, one can consider that the x axis of the convective 
coordinate sys tem is "frozen" into the middle layer of the fluid. For simple shear [10], the velocity components  

have the form 

v~ = g i T - l y ,  v~ = 0. (1 .13)  

Here 7-  = Ovx/Oy is the shear velocity and g = sign 7 -  is a parameter  that describes the direction of the 
flow: the upper  plmm moves from left to right and tim lower plane moves from right to left for g = 1 and vise 

versa for g = - 1 .  
2. M o t i o n  o f  a F i l a m e n t  u n d e r  P u r e - S h e a r  C o n d i t i o n s .  We introduce the following dimension- 

less variables and parameters:  

T = t[T[, {X, X0, Y. Y0, S} = {x, x0, y, Yo, s } / l ,  N+ = N/(dr]7]12), E = A r / B n .  (2.1) 

For the velocity components of the fluid (1.12), the problem (1.10), (1.11) has the following dimen- 

sionless form: 

N I + + ( g X  - f~ )X '  ( g y  + ~z)y,  = O, 

( g X  - X ) Y ' X '  + (gY  + Y ) ( X ' )  2 - E N + Y "  = O, 

r = O :  X =  Xo(S) ,  Y =  Yo(S),  

~->0 :  S = 0 :  X = 0 ,  Y = 0 ;  S = l :  

(x,)2 + (y , )2  = 1, 

N+ =O, 

N+ = O, Y "  = O. 

(2.2) 

Hereinafter, the  derivatives with respect to r are dotted, and those with respect to S are primed. The 
boundary conditions in (2.2) are writ ten in the centrosymmetric,  initial configuration of the filament. The 
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middle of the filament is in the coordinate origin, and the relations X ( S )  = - X ( - S )  and Y ( S )  = - Y ( - S )  
hold. Here, for the symmetric velocity fields of the fluid (1.12) and (1.13), the middles of the filament during 
its strain will always be at the origin of coordinates (the convective displacement of the filament is eliminated). 
In this case, it suffices to consider the evolution of the right half of the filament (0 ~ S ~< 1). 

According to (2.1) and (2.2), the fluid viscosity determines tension but  does not affect the evolution 
of the form. Other conditions being equal, the filament tension is proportional to the viscosity, the strain 
rate, and the length of the filament squared. The experimental  data  [1-3] support  the amplification of the 
tearing strength of a fibrous filler as the viscosity of the medium, the strain ra te  [1], and the initial length 
of the filaments [2, 3] increase. The  evolution of the form is influenced by the velocity field of the fluid, the 
relation between the friction forces E ,  and ttm initial configuration of the filament. 

Problem (2.2) is analyzed numerically for the following mixing conditions of polycaproamide filaments 
with a rubber matrix: d = 30 #m, 2l = t0 -2 m, 13'1 = 18 sec -1, # = 105 Pa .  sec, p - 1200 kg/m 3, <c) = 0.05, 
(v> ,~ [3"[I/2, Re = 4 .32 .10  -s ,  and E --- 1.53. Instead of the second equation in (2.2), we use the equation 
derived by discarding .~ from the first two equations: 

EN+Y"  + N~_Y' - g Y --- 1~, (2.3) 

which contributed to the stability of the difference scheme. The solution was found on a difference rectangular 
grid where AS = 0.01 and AT ='0.0025. The tension N+ was determined from the first equation in (2.2) 
by the left two-point sweeping (the "implicit right corner" scheme [11]), beginning with the point S = 1. 
From Eq. (2.3), the values of Y on the upper time layer were found by the left three-point sweeping (the 
Crank-Nicholson scheme). The  coupling equation [the third equation in (2.2)] was used to determine X.  The 
values of N+, Y, and X on the upper time layer were refined by iterations. 

Figure 2a and b shows the evolutions of the filament configuration and the tension distribution over 
the length for 7" = 0; 0.1; 0.2; 0.4; 0.8; and 1.6 (curves 1-6, respectively). As in Fig. 3, curve 1 in Fig. 2b 
was obtained for N+ at the first step in time. The initial shape of the filament was described by the sinusoid 
where I% = a sin(wX0), a = 0.4, a n d w  = 2.7. The  flow direction is g = 1. As can be seen in Fig. 2, 
one can conventionally distinguish two periods in the evolution of a filament of arbitrary initial form. In 
the first period, the distribution of the stretching force along the filament length is inhomogeneous and even 
compression sites are possible. The  curvature of the filament decreases to Y" = 0. The  evolution depends on 
the initial configuration. In the second period, the filament, remaining rectilinear, rotates about  the point 
X = Y = 0 streamwise. The  evolution does not depend on the initial configuration. The tension distribution 
is described by a parabola with a vertex at the point S = 0. As ~- ~ cx~, the filament axis coincides with the 
streamline passing through the coordinate origin. For g = 1, the streamline coincides with the X axis (with 
the g = - 1  axis for Y). After the second period terminates,  the tension in the filament reaches the mmximum 
Nmax = N(S=0) -~ 0.hAkim'I/2- Probably, precisely this moment  is dangerous from the viewpoint of fracture of 

the filler with its poor tensile strength. 
The filament evolution is reversible: if one changes the direction of the fluid flow (the sign of g is 

inverted), the filament will move to the initial position. 
An analysis of problem (2.2) showed that the initially rectilinear filament preserves its rectilinear shape 

during evolution, and the tension distribution over the length is described by a parabolic dependence. Its 
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evolution corresponds to the second period of evolution of a curvilinear filament. For a rectilinear filament, 
one can obtain an analytical solution of problem (2.2). 

Let the angle of slope of a rectilinear filament to the X axis be described by the function ~(T). The 

initial condition for the filament is 

= P0, 7 = 0. (2.4) 

For the functions X and Y, we assume expressions tha t  satisfy the coupling equat ion [the third equation 

in (2.2)]: 

Y ---- S sin ~, X = S cos ~. (2.5) 

The tension distribution over the filament length is parabolic: 

N+ = ~(T)(1 -- $2). (2.6) 

Substituting (2.5) and (2.6) into the first two equations of (2.2), after simple transformations we obtain 

the equations for the functions q2(r) and ~(~-): 

= 0.5g cos 2~, ~ = - g  sin 2~. (2.7) 

Integrating the second equation with allowance for the initial conditions (2.4), we find the angle of slope 

versus the time: 

= arctan [tan ~0 exp ( -2gv)] .  (2.8) 

Thus, the evolution of a rectilinear filament is described by the equations 

Y = Ss in  ~, X = Scos~ ,  N+ = 0.5g(1 - S 2) cos 2~, 
(2.9) 

qo = arctan [tan q~0 exp ( -2gv)] .  

According to (2.9), the filament tension is zero for qo = 7r/4: N+ = 0. Th e  stretching forces occur in 
the sector I~1 < 7r/4 for g = 1 or 7r/2 > l~l > 7r/4 for g = - 1 .  The stretching force reaches the maximum 
in the middle of the filament S = 0 for ~ = 0 and g = 1 or for Iq~t = rr/2 and g = - 1  and is N+ = 0.5 (in 
dimensional form, Nmax -- N(S=0) -- 0.5Arl~'l/2) �9 Here the "effective longitudinal viscosity" of a system filled 
with filaments oriented in the expansion direction is maximal  (exceeds the viscosity of tile matrLx). For tim 
orientation of the filaments I~l -- 7r/4, their tension is zero, and the effective viscosity of the system is close 

to the viscosity of the matrix. 
Solution (2.9) describes the evolution for any orientat ion of the filament even in the presence of com- 

pressing forces in it. However, a numerical analysis of problem (2.2) showed tha t  in the case of compressing 
forces in the filament, the computat ional  scheme loses its stability. Here, the middle of the filament (tSI ~< 0.2), 
where tile compressing forces are the most intense, acquires a sawtooth-like shape with a period approximately 
equal to 2AS immediately before the difference scheme loses its stability. The  strong fracture of the glass 
filaments of the filler is probably caused by their bending upon longitudinal compression in the middle part  

of the filament (see [1, 3]). 
To find the bounds of applicability of solution (2.9) and of stability of Eqs. (2.2), we have to analyze 

the stability of the solution against small perturbations.  Th e  stability problem is formulated as follows. Let 
the position of a rectilinear filament be characterized by the  angle ~ at a certain moment  of time. We set the 
increments of the functions X,  Y, and N+. It is required to clarify whether a per turba t ion  that is caused by 

these increments will increase unboundedly or damp. 
We now study a "rapid" instability at the initial moment  of filament evolution, assuming that  tile 

perturbations grow so rapidly tha t  the undisturbed motion can be considered "frozen." The hydromechanical 
system considered has no "memory;" therefore, any intermediate  position of the rectilinear filament, which 
is characterized by the angle ~, may be considered initial. Therefore, in analyzing the stability, the angle 

in the equations is treated as a parameter .  
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To solve (2.9), we introduce small perturbations in the filament form a and/3  and of tension T: 

X = S c o s ~ + a ( r , S ) ,  Y = S s i n ~ + 9 ( r , S ) ,  
(2.10) 

N+ = 0.5g(1 - S 2) cos 2g  + S), TI << 1. 

Substituting (2.10) into (2.2) and linearizing, we obtain the following equations for deviations: 

T '  + (ga - &) cos ~2 + a ' g S  cos g cos 2g - (gfl +/3) sin g + /3 'gS  sin g cos 2g = 0, 
(2.11) 

0.5Eg(1 - $2)/3" cos 2~2 + T '  sin p - ~ ' g S  cos 2g  - 9fl - / 3  = 0, a '  +/3 '  tan g = 0. 

Here relation (2.7) was used for ~. 
A stability analysis is reduced to a study of the eigenvahm problem for system (2.11) with the boundary 

conditions 

S = 0 :  a = • = 0 ,  T = T 0 ,  r  S = I :  T = 0 ,  / 3 " = 0 .  (2.12) 

We present perturbat ions in the form {c~,/3, T}  = {A,  B , C }  exp (hr) ,  where A(S), B(S) ,  and C ( S )  

are eigenfunctions of tile problem and h is the eigenvalue. In correspondence witt~ (2.11) and (2.12), for the 
eigenfunctions we obtain the problem 

C t § A(9  - A) cos~ + X g S c o s ~ c o s 2 g  - B ( g  + h) sinq~ + B ' g S s i n g c o s 2 g  = O, 

0.5E9(1 - S2)B '' cos 2g + C'  sin ~ - B ' 9 S  cos 2~ - (9 + h )B  = O, A '  + B '  tan g = 0, 

S = 0 :  A = B = 0 ,  C = C 0 ,  B ' = B ~ ;  S = I :  C = 0 ,  B " = O .  

After integration of the last equation with allowance for the boundary conditions, we obtain A = - B  tan ~2- 
The functions A and B are linearly dependent, which allows us to exclude the function A and write the 
following equations for the functions B and C: 

0.5Eg(1 - S 2 ) B " c o s 2 g  - B ' g S c o s 2 ~  - (gcos2~  + A)B = O, C '  = 2B9  sing,  
(2.13) 

S = 0 :  B = 0 ,  C = C 0 ,  B ' = B ~ ;  S = I :  C = 0 ,  B " = 0 .  

The eigenfunctions are defined with accuracy up to an arbi t rary factor; therefore, it is possible to set B~ = 1 

without loss of generality. 
We search for the solution of problem (2.13) in the Gauss plane. To do this, we introduce the following 

notation: h = h~ + ihi, B = B~ + iBi ,  and C = C~ + iCi. For the functions and the eigenvalue, we have 

Br = Bi = S, Cr = Ci = g ( S  2 - 1) s ing,  hr = - 2 9 c o s  2g, and hi = 0. 
Since ,ki = 0, there are no oscillations in the system. The identity of the dependence of the eigenvalue 

h~ and the filament tension N+ in (2.9) on ~ is noteworthy.  Therefore, the stable-strain area corresponds 
to the stretching-force region (N+ > 0). For 9 = 1 and [gl < ~r/4, the flow is stable (,~ < 0). Tile values 
of the parameters ~ = ~v/4, ,k~ = 0, and N+ = 0 correspond to the neutral stability of the filament. For 
g --- 1 and ~/2 > I~l > ~r/4, the perturbations increase unboundedly (,~ > 0), and the filament motion 
is unstable. Indeed, the loss of stability of the difference scheme was observed in this region for Eq. (2.2). 
Thus, the solution for a rectilinear filament (2.9) holds in the area I~t < ~v/4 for g = 1 and in the region 

~/2  > I~l > r~/4 for g = --1. 
3. S imp le  S h e a r  ( C o u e t t e  f low).  Substi tut ing the velocity components (1.13) into Eqs. (1.10) and 

(1.11) in dimensionless variables (2.1), we obtain the following problem: 

N~+ + (gY  - X ) X '  - Y Y '  = O, 

( g Y  - J ( ) Y ' X '  + Y(X')  2 - E N + Y "  = O, (X,)2 + (y,)2 = 1, 

r = 0 :  X = X o ( S ) ,  Y = Yo(S),  lV+ = O, 

(3.1) 
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r > 0 :  S = 0 :  X = 0 ,  Y = 0 ;  S - - - h  N + = 0 ,  Y"=O. 

Here, the shear velocity ]7-1 is used in the expressions for r and AT+. 
Figure 3a and b shows the evolution of the form and tension of a sinusoidal filament, respectively, 

under the simple-shear conditions for r = 0, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 (curves 1-8). The calculations 
were performed trader the conditions indicated in Sec. 2 but  for a = 0.75, w = 6, and g = 1. As in Fig. 2, one 
can see in Fig. 3, that  the filament motion can be divided into two periods. The  curvature of the filament 
decreases, evolving to a rectilinear shape in the first period and the rectilinear filament rotates in the flow 

direction in the second period. 
The  character of tension variation differs greatly from the case of pure shear. In the first period, the 

tension increases, and its distribution gradually takes a parabolic form. In the second period ( r  > 0.8), the 
tension, preserving the parabolic character of the distr ibution over the filament length, decreases to zero. (It 
is shown below that tim maximum tension occurs for the angle of slope of the filament ~ = ~r/4.) It follows 
from an analysis that the initially rectilinear filament conserves its shape during evolution. 

For a rectilinear filament, an analytical solution of problem (3.1) is possible. The  course of the solution 
is similar to that given in Sec. 2. We seek a solution in the form (2.5), (2.6). Subst i tut ing ttmse expressions 

into (3.1), we obtain the equations for ~ ( r )  and 9z(r) 

= 0.25g sin 2~, ~ = - g  sin 2 ~. 

With allowance for conditions (2.4), the solution of the second equation has the form 

rg = cot ~ - cot ~0- 

Thus, under the simple-shear conditions the evolution of a rectilinear filament is described by the 

Y = S sin ~, X = S cos ~, IV+ = 0.25g(1 - S 2) sin 2~, 
(3.2) 

= arctan [tan ~0/(1 + g r t a n  ~0)]. 

Here, the condition N+ > 0 should be satisfied in the sector -7r /2  < p < 7r/2; for this, the equality sign p = g, 
which follows from the singularity of the expression for ~ ( r )  in (3.2) (g and tan ~0 should have the same sign), 
should strictly hold. It follows from the expression for AT+ in (3.2) that  the maximum tension in the filament 
occurs for ~ = 1r/4 and is N+ = 0.25 for S = 0 (Nmax = 0.25A~]7-1/2), i.e., it is a factor of two smaller than 
that  for pure shear. The  significant distinction from pure  shear consists of the fact tha t  upon termination of 

the second period, when the filament axis coincides with the streamline (g = 1, Y --- 0, r = ~c, and p = 0), 
the tension is equal to zero (N+ --- 0). A comparison of the  functions ~( r )  in (2.8) and (3.2) showed that  the 
rotational velocity of the filament in the flow direction for simple shear is smaller than that for pure shear. 
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Therefore, the effect of the filament "orientation" during pure shear is expressed more distinctly. However, 
during pure shear (approximately 4#'y 2) the specific energy expenditures necessary for viscous-fluid strain, 
which are characterized by a dissipation fimction, are greater than in the case of pure shear (of the order 

For sign ~; = - g ,  compressing forces appear in the filament, and the difference scheme of problem (3.1) 
becomes unstable. The stability is lost even if the nonrectitinear segment of the filament is subjected to 
compressing load (N+ < 0). 

The  stability of a rectilinear filament against small perturbat ions was investigated. By analogy with 
(2.10), we represent perturbations as follows: 

X = Scos~z + a(7, S), Y = Ssin~z + /3(r,S), 

N+ = 0.25g(1 - $2) sin2~ + T(T, S), [a ,3 ,  T I << 1. 

The linearized per turbat ion equations have the form 

T '  + (g~ - &) cos ~ - / 3  sin ~ = 0, 

0.25Eg(1 - $2)3" sin 2~7 + T ' s i n  ~ - 0.5/3'gSsin2~ - ~ = O, a' + ,3' tan ~ = 0, 

T > 0 :  S=O: a = 3 = O ,  T = T 0 ,  J = / 3 ~ ;  S = 1 :  T = 0 ,  3 " = 0 .  

We introduce tile eigenfunctions of the problem A(S), B(S),  and C(S) and the eigenvalue A: 
{a, Z, T} = {A, B, C} exp (Aw). Taking into account the linear dependence of the functions A and B (see 
Sec. 2), for the functions B and C we have the equations 

C ~ + gB cos ~ = 0, 0.25Eg(1 - S2)B" sin 2~ - 0.5B~9S sin 2~ - (0.5g sin 2~ + A)B = 0, 

S = 0 :  B = 0 ,  C = C 0 ,  B ~=1 ;  S = 1 :  C = 0 ,  B " = 0 .  

The solution of this problem in the complex plane has the form Br = Bi = S, (77. = Ci = -0.5g(1 - S 2) cos ~;, 
Ar = --g sin2~, and Ai = 0. Oscillations are absent (Ai = 0). The  dependence Ar(c;) is similar to the 
dependence N+(~;) in (3.2); therefore, if the filament undergoes the stretching forces N+ > 0 and Ar < 0, 
its motion is stable. For [~] < zr/2, the stability condition Ar < 0 is satisfied if - g s ign  ~ < 0. The  neutral 
stability occurs in the horizontal position of the filament (At = 0, ~ = 0, and N+ = 0). 

The static equilibrium of the filament coincides with the neutral stability. Therefore, in real conditions 
the filament orientation is unstable, because the residual flexural elasticity of the filament or the fluid- 
perturbat ion velocity can displace the filament to the region q~ < 0 (for g = 1), which eventually leads to 
rotat ion of the filament about the center being in its nfiddle. The angular rotational velocity is irregular: it 
reaches the maximum for [~[ = 7r/2 and the minimum in the neighborhood of ~ = 0. Thus, the simple shear 
flow does not ensure the stable orientation of an isolated finite-length filament. 

Under the simple-shear conditions, the greatest viscosity of the filled system corresponds to the filament 
orientation [~] = 7r/4 when the tension in them is maximal. 
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